Skip to main content

Generative Molecular Design and Experimental Validation of Selective Histamine H1 Inhibitors

By January 30, 2024May 28th, 2024No Comments

Generative molecular design (GMD) is an increasingly popular strategy for drug discovery, using machine learning models to propose, evaluate and optimize chemical structures against a set of target design criteria. We present the ATOM-GMD platform, a scalable multiprocessing framework to optimize many parameters simultaneously over large populations of proposed molecules. ATOM-GMD uses a junction tree variational autoencoder mapping structures to latent vectors, along with a genetic algorithm operating on latent vector elements, to search a diverse molecular space for compounds that meet the design criteria. We used the ATOM-GMD framework in a lead optimization case study to develop potent and selective histamine H1 receptor antagonists. We synthesized 103 of the top scoring compounds and measured their properties experimentally. Six of the tested compounds bind H1 with Ki’s between 10 and 100 nM and are at least 100-fold selective relative to muscarinic M2 receptors, validating the effectiveness of our GMD approach. Excelra’s GOSTAR® database was used for training predictive models of binding affinity for H1 and M2.


Please fill the form

"*" indicates required fields

This will close in 0 seconds