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Race-related host and microbe
transcriptomic signatures in triple-
negative breast cancer
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Triple-negative breast cancer (TNBC) shows racial disparities, with higher incidence in women of
African ancestry (AA) compared to European ancestry (EA). Meta-transcriptomic analysis of TNBC
tumor tissues from AA (n = 17) and EA (n = 19) subjects revealed distinct microbial landscapes.
Hierarchical clustering based on microbial transcripts separated samples into two groups
predominantly defined by racial ancestry. Bacterial genera including Hafnia and Cedecea were more
abundant in AA tumors, while Erwiniawas higher in EA tumors. Cellular composition analysis by xCell
revealeddifferences in immunecell populations,withAA tumorshavinghigher Th1cell abundanceand
EA tumors containing higher macrophage M2 cell abundance. Nonetheless, AA women with high M2
abundance experienced poorer disease-free survival (DFS) than EA women. Integrative analyses
revealed that high expression of human SPDYE2B gene was associated with Hafnia abundance and
decreased DFS, highlighting complex host-microbe interactions in TNBC patients.

Breast cancer represents a preeminent health burden, leading to
approximately 15% of cancer-related deaths in women worldwide. In
the United States about 13 of every 100 women are expected to develop
breast cancer during their lifetime1. Triple-negative breast cancer
(TNBC), a highly aggressive form of breast cancer is characterized by
the absence of estrogen receptor (ER), progesterone receptor (PgR),
and human epidermal growth factor receptor-2 (HER2)2 as determined
by immunohistochemistry3. Patients diagnosed with TNBC face an
increased risk of distant metastasis and mortality within the first 5
years of diagnosis4.

Various factors, both genetic and non-genetic, are associated with
an elevated risk for TNBC5–8. TNBCs exhibit racial disparities, with
higher incidence and mortality rates in women of African ancestry
(AA) compared to those of European ancestry (EA)9–11. AA women

tend to be diagnosed at younger ages and more advanced disease
stages12,13. Although socioeconomic differences contribute to these
disparities14,15, biological factors are also involved in TNBC risk and
outcomes for AA patients8. Well-documented pathogenic variants in
the BRCA1 and BRCA2 genes partially determine breast cancer sus-
ceptibility, andmany new therapies target known genetic drivers16. Our
previous studies show gene expression differences between AAs and
EAs17,18. However, the contribution of environmental factors remains
poorly understood. Recent studies reveal diverse microbial commu-
nities in normal and malignant breast tissue19–29, with tumor type-
specific bacteria present in both cancer and immune cells29. In the
present study, we aimed to provide insights into the potential interplay
between the tumormicrobes and host genes in AA and EA patients and
their associations with prognostic outcomes.
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Results
Patient cohort
We investigated 17 AAs and 19 EA samples, a subset of tumors defined by
genetic ancestrymodels in larger, recently describedRNASeqstudies17,18,30 of
women with TNBCs, diagnosed at the University of Alabama at Birming-
ham (UAB) between 2001 and 2012 (Table 1). The samples used were
approved by the Institutional Review Board at UAB (IRB number:
060911009). When available, clinical information such as age, gender, date
of diagnosis, and pathological stage (according to the American Joint
Committee on Cancer [AJCC] staging system) of the tumor, determined
after surgical resection, was obtained from the patients’ medical records.
Metastatic staging was not performed unless clinically indicated. Therefore,

all patients were considered by their treating surgeons to have localized,
non-metastatic cancer.

The survival time ranged between 1.7 months after diagnosis to
over 14.8 years (Fig. 1a). By the end of the follow-up period
(median = 84.7 months), 16 of the 36 patients had died due to cancer.
Of the 20 patients alive, 14 were considered disease-free (Fig. 1a). The
clinical stage at diagnosis spanned between stages II to IV, with most
being stage II, followed by stage III (Fig. 1a). There were significantly
more EA patients with stage II than AA patients (p = 0.006) (Table 1).
Concordant with what was expected among TNBCs, most patients had
grade III tumors regardless of race. Patients who received radiation in
addition to chemotherapy (neoadjuvant and/or adjuvant) had better
DFS than those without radiation treatment, but there was no statis-
tically significant difference in DFS between AA and EA patients
(Supplementary Fig. 1).

Microbial abundance and cluster analysis
RNA sequencing of macro-dissected breast tumor samples was performed
using standard methods17,18,30. The identity and abundance of microbial
transcripts in tumor samples were determined using the PathSeq compu-
tational subtraction pipeline31,32. Unsupervised hierarchical clustering of
relativemicrobial abundancedatausingSpearman rank correlation revealed
twomajormicrobe-derived (MD)clusters,MD-Cluster1 andMD-Cluster 2
(Fig. 1a). Interestingly, theseMD-Clusters exhibited race-related separation
(Fisher’s exact p = 0.044). MD-Cluster I was predominantly comprised of
AA patients (ntotal = 15, nAA = 10); MD-Cluster II was dominated by EA
patients (ntotal = 20, nEA= 14).Within eachMD-Cluster, samples formed
sub-clusters by racial group. In theAAcohort, patients inMD-Cluster 1 had
better DFS than those inMD-Cluster 2 (Fig. 1b), whereas, in the EA cohort,
patients in MD-Cluster 2 had better DFS than those in MD-Cluster 1
(Fig. 1c).

Table 1 | Race and clinical attributes of the selected patients

Level AA CA p value

Sample Size 17 19

Stage (%) II 10 (58.8) 18 (94.7) 0.006

III 7 (41.2) 0 (0.0)

IV 0 (0.0) 1 (5.3)

Grade (%) II/III 2 (11.8) 1 (5.3) 0.92

III/III 15 (88.2) 18 (94.7)

Neoadjuvant Chemotherapy (%) No 11 (64.7) 16 (88.9) 0.194

Yes 6 (35.3) 2 (11.1)

Adjuvant Chemotherapy (%) No 3 (23.1) 1 (7.1) 0.534

Yes 10 (76.9) 13 (92.9)

Radiation (%) No 6 (40.0) 6 (37.5) 1

Yes 9 (60.0) 10 (62.5)

Fig. 1 | Clinicopathological features of microbial transcript-based tumor MD-
Clusters. aHierarchical clustering separated tumors into twomajorMD-Clusters by
microbial transcript profiles. MD-Cluster 1 predominantly contained AA samples
(nAA = 10), while MD-Cluster 2 was enriched for EA samples (nEA = 14). Within
each MD-Cluster, sub-clusters further segregated by race. Metadata associated with

each sample, including stage, grade, vital status, disease-free status (Disease-free:
alive without disease or unknown status; Not disease-free: dead or alive with con-
firmed disease), and cause of death, is displayed. b, c Kaplan–Meier analysis of
disease-free survival (DFS) for AA and EA, respectively, based on MD-Clusters.
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The most abundant genera in both AA and EA tumors were similar:
Bacillus, Escherichia, Serratia, Shigella, and Cronobacter (Supplementary
Data 1). However, there were significant differences in relative microbial
abundance in tumors across the two racial groups (Fig. 2). Hafnia, Wei-
sella, Cedecea, Delta/Desulfonatronospira, Olespira, Rahnella, Raoultella,
Solibacillus, Kosakonia, Aggregatibacter, Thalassospira, Halomonas, and
Clostridium species exhibited significantly higher abundance (FDR ≤
0.05) in the AA population. In contrast, Erwinia, Tetragenococcus, and
Serratia showed significantly higher abundance (FDR ≤ 0.05) in the EA
patients (Fig. 2). Additionally, the differential abundance of microbes
based on MD-Clusters (Supplementary Fig. 2) identified Serratia was
notably abundant inMD-Cluster 2, which was predominantly comprised
of EA patients. Interrogation of the Microbe Atlas Project database
(https://microbeatlas.org/) revealed that the above-listed bacterial genera
have been previously detected in human samples.

Differential expression of genes based on race and MD-Cluster
Differential expression analysis of human RNASeq data by race revealed 40
differentially upregulated (L2FC ≥ 1 and FDR ≤ 0.05), and 129 differentially
downregulated genes in AA patients compared with EA patients
(L2FC ≤−1 and FDR ≤ 0.05), including protein-coding and non-coding
genes (Fig. 3a, Supplementary Data 2). Of these, the top 5 differentially
upregulated (by L2FC) coding genes in AAs were SPDYE2B, HIST1H4F,
NES, SPDYE2, and HIST1H3I, while the top 5 non-coding upregulated
genes in AAs were CSPG4P10, RNU6-1266P,MTND4P12, TCEB3CL2, and
CSPG4P8. In contrast, the top 5 downregulated coding genes in AAs were
ISM1, IGFBP3, PYGL, BCAS4, and SYTL2, while the top 5 non-coding
downregulated genes inAAswereRN7SKP48,MTRNR2L10,MTRNR2L11,
RP11-777B9.5, and RN7SL499P.

Ingenuity Pathway Analysis (IPA; Qiagen) revealed several significant
canonical pathways (p ≤ 0.05) with differential expression between AA and
EA patients. DNA replication pre-initiation and DNA damage/Telomere

stress-induced senescence were upregulated in AAs compared with EAs
(Fig. 3b),with higher expressionof histoneH2AandH2B family genes, such
as H2AC14, H2AC7, H2BC12, H2BC14, H2BC15, and H2BC9 (Supple-
mentary Data 3). In contrast, the stathmin1 pathway, the Th2 pathway, the
S100 family signaling pathway, and IL-4 signaling were downregulated in
AAs (Fig. 3b). A list of genes involved in these pathways is provided in
Supplementary Data 3.

Differential gene expression analysis of the MD-Clusters revealed 31
upregulated (L2FC ≥ 1 and FDR ≤ 0.05) and 64 downregulated genes
(L2FC ≤−1 and FDR ≤ 0.05) (Supplementary Fig. 3) in MD-Cluster 1. The
top 5 upregulated coding genes were PRRG3, MT1H, RNY5, LRRD1 and
WDR93 while the top 5 non-coding genes were SNORD21,MT-TF, CTD-
2651B20.7, SNORD55 and SNORD23. The top 5 downregulated coding
genes were SPDEF, CXCL17, CHRDL1, IGF1 and FCRL5, while the top 5
downregulated non-coding genes were CTD-2545G14.7, TRAJ33, TRAJ39,
TRAJ30 and SSXP10 (Supplementary Data 4).

IPA revealed upregulation of genes engaged in tRNA processing in
mitochondria and RNA polymerase II transcription of snRNA genes in
MD-Cluster 1 (Fig. 3c). Conversely, triglyceride metabolism and doc-
osahexaenoic acid (DHA) pathways were downregulated in MD-Cluster 1.
A list of the genes involved in these pathways is provided in Supplementary
Data 5.

Next, we investigated the cell type enrichment in the tumors using
xCell33. The analysis revealed significant enrichment (p-value ≤ 0.05) of
preadipocytes in MD-Cluster 2 (Fig. 3d). In addition, Th1 cells,
megakaryocyte-erythroid progenitor (MEP) cells, and pro B-cells in AA
patients and M2 macrophages in EA patients (Fig. 3e, Supplementary Fig.
4A). Interestingly, a linear relationship was observed between M1 and M2
abundance in AA but not in EA women (Supplementary Fig. 4B), and
survival analysis with patient stratification by race and M2 abundance
revealed that AA women with high M2 abundance had poorer DFS than
other subgroups (Supplementary Fig. 4C).

Fig. 2 | Differential abundance of tumormicrobiome in tnbc patients by race.Comparativemarker selection analysis was performed using t-tests (FDR < 0.05) to identify
taxa with differential abundance between AA and EA patients.
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Integrated analysis of microbial and host gene abundance and
their relationship to disease-free survival
To identify relationships between the microbiome and the host tran-
scriptome, we combined microbial transcript abundance and host gene
expression data into a singlematrix.Hierarchical clustering using Spearman
rank correlation was performed on the combined data matrix. Of the 1000

clusters generated, therewere 828 homologous clusters (823with host genes
only, 5 with bacteria only) while 172 heterologous clusters contained at least
onehost gene andonebacterium(Fig. 4, SupplementaryData 6).Therewere
7 “high-confidence” heterologous clusters, which displayed strong positive
correlative relationships (Spearman rank R > 0.7) between microbial
abundance and host gene expression (Supplementary Data 7).

Fig. 3 | Differentially expressed genes and related pathways in TNBCpatients. (a)
Volcano plot showing the log2 fold change and adjusted p-values for all differentially
expressed genes between AA and EA cohorts ( | log2FoldChange | ≥ 1, padj < 0.05).
b, c Bar charts depicting canonical pathways predicted to be differentially activated
in AA (red) versus EA (cyan), and MD-Cluster 1 (violet) vs MD-Cluster 2 (bright

blue), respectively. Pathways were identified based on a Z-score cutoff of ±2 and a
p-value of <0.05. Detailed lists of genes and pathways are available in Supplementary
Data 2, 3. d, eBox plots of the xCell scores for preadipocytes byMD-Cluster and Th1
cells by race, respectively.
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Cluster 26 revealed two notable relationships. In one sub-cluster, the
host gene SPDYE2B closely clustered with Hafnia (R = 0.77), Shewanella
(R = 0.74), Delta/Desulfonatronospira (R = 0.69), Desulfotomaculum
(R = 0.66), and Pelotomaculum (R = 0.66). These features were more
abundant inAApatients (Fig. 5a). Another sub-cluster of cluster 26 showed
close clustering of the SCARNA4 gene with Shinella (R = 0.79). Notably,
Erwinia abundancewas highly correlated in a sub-cluster of cluster 176with
levels of theRN7SL736Ppseudogene (R = 0.756), whichwasmore abundant
in EA patients (Fig. 5b). Other highly correlated host-microbe associations
(Supplementary Data 7) included SNORA18 andHalothiobacillus in cluster
79 (R = 0.704), BLOC1S1 and Desulforudis in cluster 105 (R = 0.732),
IGLVI-70 and Delta/Arcobacter in cluster 107 (R = 0.723), KRT5 and
Heliobacterium in cluster 126 (R = 0.73), TMEM203 and Idiomarina in
cluster 169 (R = 0.72), and CCNYL1 and Oceanobacillus in cluster
174 (R = 0.72).

We evaluated the relationship(s) between these features (microbe(s)/
gene(s)) and DFS (Fig. 5c–f, Supplementary Fig. 4). For each host gene or
microbe, the cohort was stratified into high and low groups determined by
the median values for each feature. High expression of the host gene
SPDYE2B was associated with reduced DFS (p = 0.0082) (Fig. 5c). Further,

high abundance of Hafnia (Fig. 5d) or Shewanella (Supplementary Fig. 4)
were also associated with worse DFS (p = 0.037 and p = 0.012, respectively).
However, although high RN7SL736P levels were associated with better DFS
(p = 0.011), therewas no association between its correlatedmicrobeErwinia
and DFS (Fig. 5e, f).

In a Cox proportional hazards model adjusting for race, MD-Cluster,
stage, and treatment type, only a high abundance of SPDYE2B and race
remained associated with worse DFS (Supplementary Data 8).

Discussion
Host genes affect the pathogenesis and survival outcomes of patients with
TNBCs5,6,34. The variability in the tumor microenvironment (TME), is
involved in shaping the transcriptomic landscape and driving intratumor
heterogeneity across various malignancies35,36 and these fluctuations can
alter the growth of microbiota within the TME37. Given this dynamic
interplay, we investigated the relationships between the tumor micro-
biome, host transcriptome and outcomes in TNBC patients. For this
analysis, we extracted RNA from formalin-fixed paraffin-embedded
(FFPE) tissue samples and performed microbial analysis using PathSeq.
The use of FFPE samples for microbiome research has gained increased

Fig. 4 | Hierarchical clustering-based relationships between host genes and
bacteria. Host genes and microbial transcripts were hierarchically clustered based
on co-abundance patterns, with homologous clusters containing either host genes

only or bacteria only filtered out to retain high-confidence heterologous clusters
containing both host genes and bacteria with a Spearman correlation >0.7.

Fig. 5 | Correlative and survival relationships between host gene expression and
microbial transcript abundance. a Sub-cluster from cluster 26 showing clustering
of SPDYE2B genewithHafnia,Desulfotomaculum,Pelotomaculum, Shewanella, and
Delta/Desulfonatronospira. b Sub-cluster from cluster 176 showing clustering of

RN7SL736P pseudogene with Erwinia. c Kaplan–Meier (KM) analysis of DFS by
SPDYE2B gene expression. d KM analysis of DFS by Hafnia abundance. e KM
analysis of DFS by RN7SL736P gene expression. f KM analysis of DFS by Erwinia
abundance.
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traction in recent34–36. A comparative study between FFPE and fresh fro-
zen samples demonstrate that 78.55% of operational taxonomic units
remain consistent across preservation methods, with no significant dif-
ferences observed in core bacterial composition and alpha diversity37.
Other studies34–36, have established the feasibility and reliability of retro-
spective microbiome studies using archived clinical specimens- which
represent the most widespread sample type available in cancer research.

Microbial transcript-based hierarchical clustering of TNBC patients
(n = 36) revealed two distinct microbiome-derived clusters (MD-Clusters),
each dominated by samples from different racial cohorts. We identified
relatively higher abundance of Hafnia and Shewanella in AA tumors, and
Erwinia and Serratia in EA tumors. The differential abundance of bacterial
species by race suggests a role for these microbes in modulating tumor
biology and influencing clinical outcomes in a race-dependent manner.
Notably,Hafnia species are frequently isolated from clinical specimens and
are often associated with extra-intestinal infections, particularly in immu-
nocompromised individuals38,39. Although Hafnia is currently being mar-
keted as a probiotic with anorexigenic properties40, Hafnia infections have
also been associatedwith fatal outcomes41.Hafnia produces a cytolytic toxin
active againstVero cells42 andhas been shown to survivewithinHeLa cells43.
These contrasting observations suggest the need for further studies on the
pathogenic potential of this bacterial genus. Although our understanding of
the factors that may potentially contribute toHafnia pathogenesis within a
host is limited, suggested mechanisms include biofilm formation, motility,
and adherence to eukaryotic cells44. Similarly, Shewanella, though a rare
pathogen in humans, has been associated with pulmonary and blood
infections in cancer patients, indicating its relevance in the context of
immunocompromised individuals and its capacity to affect TME45,46. The
microbes significantly abundant in EA patients, such as Serratia, cause
infections in cancer patients47. The substance known as Coley’s toxin,
formed by the toxins produced by Serratia marcescens and Streptococcus
pyogenes, induces tumor regression and has been successfully used to treat a
variety of cancers, including sarcomas, carcinomas, lymphomas,myelomas,
and melanomas48.

We observed race-associated differential expression in both protein-
coding and non-coding RNAs (ncRNAs) genes. Two of the most differ-
entially expressed coding genes in AA patients (SPDYE2 and SPDYE2B)
encode proteins that belong to the Speedy/Ringo family of non-canonical
activators of the cyclin-dependent kinases, CDK1 andCDK2,which control
cell cycle progression49,50.Overexpressionof theprototypical familymember
RingoA/Spy1 has been observed in breast cancer tissue microarrays, and
siRNA knockdown of RingoA/Spy1 results in decreased proliferation of the
TNBC cell line MDA-MB-23151,52. Therefore, it is possible that high
expression of these Speedy/Ringo genes may differentially modulate cell
cycle regulation in AA TNBC patients.

Some of the top upregulated genes in the AA cohort included pseu-
dogenes and ncRNAs, such asCSPG4P10, RNU6-1266P,RP11-17J14.2, and
MTND4P12, suggesting potential regulatory roles for race-associated
pseudogenes in TNBC pathogenesis. For example, the pseudogene
MTND4P12 functions as a competing endogenous RNA (ceRNA), reg-
ulating the expression of the well-established oncogene AURKB53. By
sequestering microRNAs that would otherwise target and repress AURKB
mRNA, MTND4P12 may facilitate the aberrant expression of this kinase,
leading to tumor growth and metastasis. Interestingly, MTND4P12
expression is negatively correlated with overall survival in cutaneous mel-
anoma patients53. Although MTND4P12 was significantly upregulated in
AAs, in the present study, AURKB itself did not exhibit significant differ-
ential expression, suggesting that additionalmechanismsmaybe involved in
regulating its activity.

Pathway enrichment analyses provided further insights into the bio-
logical processes and signaling cascades dysregulated in a race- and MD-
Cluster-related manner. The downregulation of DNA replication and
damage response pathways in AAs and upregulation of histone genes
H2AC7, H2AC14, H2BC9, H2BC12, H2BC14, and H2BC15 in AAs is
notable because downregulation of histone pathways (H2A and H2B) is

associated with anthracycline sensitivity in breast cancers54. In addition,
pathways involved in breast cancer regulation by stathmin1 are down-
regulated in AA patients. Stathmin-1 is a cytoplasmic phosphoprotein
involved inmitotic spindle formation and cell division55. Its downregulation
in AA TNBCs indicates a reduced microtubule formation, which could
affect cell division, leading to a differential response to treatments targeting
microtubule dynamics, such as taxane-based chemotherapies56,57.

Comparison of gene expression based on MD-Clusters revealed sig-
nificant upregulation of genes involved in mitochondrial tRNA processing
inMD-Cluster 1 (enriched forAA tumors), and genes related to triglyceride
metabolism and docosahexaenoic acid (DHA) pathways in MD-Cluster 2
(predominantly EA tumors). The DHA pathway induces apoptosis in
cancer cells by activating theMAPK signaling pathway and suppressingAkt
phosphorylation58,59, and may potentially promote tumor growth, pro-
gression, and metastasis in breast cancers60. It is therefore possible that
upregulation of DHA pathways in MD-Cluster 2 may induce apoptotic
effects in EA patients, potentially underlying better disease-free survival.

We performed xCell-based cell enrichment analyses to identify the
various cell types associated with race and MD-Clusters. We observed that
Th1 cells, MEPs, and pro B-cells were enriched in AA patients; macrophage
M2cellsweremore abundant inEApatients,withpreadipocytes enriched in
MD-Cluster 2, dominated by CAs. At first glance, the immune cell findings
appear to be at variance with previous studies suggesting the poorer out-
comes in breast cancer in general among AA women may be linked in part
tohigherM2abundance inAAbreast tumors thanEA tumors61,62.However,
similar to our findings, other TNBC-focused studies63 have observed lower
levels ofM2macrophages inAAwomen, and nuanced interpretation of our
data underscores the complexity of these relationships.Our observation of a
linear relationship between M1 and M2 abundance in AA but not in EA
women is in keeping with the link between mixed M1/M2 phenotype and
tumor aggressiveness64. Very interestingly, we also observed that the subset
of AA women with the highest tumor M2 abundance had poorer DFS
compared with EA women regardless of their tumor M2 abundance. This
suggests that there is still a relationship between high M2 abundance and
poor outcomes in AAwomen in spite of the overall lowerM2 abundance in
AA women compared with EA women.

Our integrated analysis of microbial and transcriptional clusters
identified significant host-microbe associations that potentially influence
DFS in patients. Cluster 26 emerged as particularly notable, with strong
positive correlations between SPDYE2B and Hafnia. Both of these features
were significantly abundant in AA patients. A high abundance of Hafnia
and SPDYE2Bwas associatedwithworseDFS, suggesting that, for subsets of
TNBC patients, these features may synergize in influencing tumor biology
and patient outcomes.

The identification of race-specific host-microbe interactions in TNBC
offers new insight into how tumor biology and health disparities may differ
across populations. The strong positive correlation between SPDYE2B
expression andHafnia abundance inAApatients, coupledwith their shared
association with poor DFS, suggests a synergistic relationship that may
contribute to the observed racial disparities in TNBC outcomes. This host-
microbe axis potentially creates a feedback loop where microbial metabo-
lites or virulence factors influence cell cycle regulation through the Speedy/
Ringo pathway, while altered host gene expressionmay reciprocally modify
the tumor microenvironment to favor specific microbial populations. The
differential immune cell compositions observed—withAA tumors showing
higher Th1 cell abundance and EA tumors exhibiting greater M2 macro-
phage infiltration—may serve as both drivers and consequences of these
distinct microbial communities. Importantly, our observation that AA
womenwithhighM2abundance experienced thepoorest survival outcomes
suggests that the interplay between immune phenotype and racemay create
unique vulnerabilities that could be targeted as therapeutic avenues. These
findings highlight the necessity of incorporating both host genetics and
microbial ecology into precision medicine approaches for TNBC, as tradi-
tional biomarkers may inadequately capture the complexity of tumor
biology across diverse populations.
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Our current study serves as an important proof-of-concept that
demonstrates the feasibility of identifying race-related host-microbe inter-
actions in TNBC. While our sample size is small, it is comparable to other
exploratorymicrobiome studies on breast cancer tissues65–67. In addition, no
two studies have produced the exact same microbial associations. This can
be explained in part by the samples being collected from different geo-
graphical sites. We also hypothesize that the role of microbes in breast
cancer is primarily facultative rather than causative and that the effects are
subserved by microbial products and/or metabolites which may be more
similar in function than bacterial identity and taxonomy may suggest.
Bacteria identified in different studies will ultimately help to narrow down
the culprit metabolites in future work.

We have presented a novel integrative analytical framework for iden-
tifying host-microbe associations that can be applied to larger cohorts to
validate race-associated interactions and their clinical implications in
TNBC. Larger cohort studies incorporating multi-omics data and com-
prehensive clinical annotations would facilitate the identification of robust
microbiome-host signatures predictive of disease outcomes, paving the way
for the development of novel prognostic biomarkers and therapeutic stra-
tegies tailored to distinct patient populations.

Methods
Host transcriptome analysis
The samples were collected as macro-dissected breast tumor tissues during
routine surgical procedures at UAB between 2001 and 201217. A retro-
spective cohort of formalin-fixed, paraffin-embedded (FFPE) archival tis-
sues from the Division of Anatomic Pathology at UAB was subjected to
RNA extraction using standard protocol. The extraction of RNA from the
macro-dissected samples was subjected to RNA extraction using standard
protocol. Raw sequencing reads were assessed for quality using FastQC
v0.11.8 (https://github.com/s-andrews/FastQC). Adapters and low-quality
bases were trimmed from the raw reads with Trimmomatic v0.3668 to retain
only high-quality sequences for downstream analysis. The trimmed reads
were aligned to the human reference genome (GRCh37) using the HISAT2
aligner v2.0.469. Gene type annotations were performed with GENCODE
version 46. Following read alignment and rRNA removal, the RNASeq data
were assembled into transcript models using Stringtie v1.3.369. Differential
expression (DE) analysis between race groups was performed using the
BioconductorpackageDESeq2version1.36.070 tocompute log2FoldChange
(L2FC) and Benjamini-Hochberg (BH)-based False Discovery Rate (FDR)
adjusted p-values. Statistical significance was determined at an FDR
threshold of 0.05.

Microbial transcriptome analysis
To identifymicrobial sequences from tumorRNASeqdata (n = 36),we used
the PathSeq pipeline71,72. PathSeq first removes low-quality and low-
complexity reads. Host reads are then filtered out through a two-step pro-
cess. First, k-mer matching (default, k = 31) rapidly identifies short
sequences of human origin. Second, the Burrows-Wheeler Aligner (BWA-
MEM)73 iteratively aligns reads to the human reference genome and
removes those with defined identity and coverage. Unaligned non-host
reads are subsequently aligned to a microbial genome database (RefSeq:
archaea, bacteria, fungi, protozoa, and virus) using BWA-MEM73. The
mapped reads were then used to derive the microbial read counts at each
taxonomic level in each sample.

Using the microbial data, we performed Spearman rank correlation-
based hierarchical clustering of tumors with average linking to determine
microbe-derived clusters (MD-Clusters). To identify microbes with robust
race-specific abundance differences between AA and EA cohorts, we used
the comparative marker selection tool in Morpheus (https://software.
broadinstitute.org/morpheus/). Microbial transcripts count data were
log2(counts+1) transformed and analyzed by t-tests between AA and EA
groups. BH-based false discovery rate (FDR) adjustment was applied to
select significant markers at an FDR threshold of 0.05.

Differential expression of host genes based on MD-Cluster
profiles
Similar to the race differential expression analysis, MD-Cluster-based
differential expression was performed using DESeq2 version 1.36.067.
Log2(fold changes) and FDR-adjusted p-values were computed to
identify genes with significant expression differences between MD-
Cluster groups. An FDR threshold of 0.05 was used to determine sta-
tistical significance.

Pathway analysis
Pathway analysis was conducted using the IPA software (QIAGEN) by
using the gene expression data derived from both race and MD-Cluster
stratifications. Coding genes with an absolute log2 fold change
( | L2(FC)|) ≥ 1 and a p < 0.05 were subjected to pathway analysis and
construction of a protein-protein interaction (PPI) network. Pathways or
networks with absolute Z-scores≥ 2 and p < 0.05 were considered sig-
nificantly enriched.

Integration of microbiome and transcriptomic data
To identify associations between the microbiome composition and host
gene expression, microbial transcript abundance and gene expression data
were combined into a single matrix. This matrix was subjected to hier-
archical clustering using Spearman correlation with the average linkage
method to generate 1000 clusters. Of these, clusters with only bacteria or
only host genes (homologous clusters) were filtered out, but those con-
taining at least one bacterium and at least one host gene (heterologous
clusters), with data representation (non-zero) in ≥50% of samples, were
retained. Subsequently, high-confidence heterologous clusters were identi-
fied using a cutoff of Spearman correlation >0.7 between host genes and
bacteria (Supplementary Fig. 5).

Cell-type enrichment analysis
To investigate cellular heterogeneity in TNBC tumors, we performed gene-
signature-based, cell-type enrichment analysis using xCell version 1.1.0
(https://github.com/dviraran/xCell/tree/master). This analysis generated
xCell scores for various cell types. Further, we assessed the association of
these xCell scores with race and MD-Cluster by using the Wilcoxon rank-
sum test.

Disease-free survival
Kaplan-Meier (KM) curves were generated to determine disease-free sur-
vival (DFS) using ‘survival’, ‘survminer’, and ‘ggplot2’ R packages. Curves
were stratifiedby race,MD-Cluster, treatment types, ormicrobe/gene-based
abundance (high/low groups split by median). Survival distributions were
compared using the log-rank test, with p < 0.05 considered statistically
significant. The Cox proportional hazards model was used to analyze the
impactofHafnia and SPDYE2B abundanceonDFS, adjusting for race,MD-
Cluster, stage, and treatment type.

Data availability
The datasets are available in the BioProject database under Accession No.
PRJNA598161. All analyses were performed using publicly available soft-
ware and standard protocols. No custom code was developed for this study.

Code availability
The specific software versions and parameters used are detailed in the
Methods section.
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